
NASA-CR-196271

Information Sciences Institute

University of Southern California

Department of Contracts and Grants

University Park

Los Angeles, CA. 90089-1147

0 C/'/"

Formalized System Development I

Final Technical Report

Sponsored by Defense Advanced Projects

Agency (DOD)

DARPA/CSTO
Title of Contract:

"A Proposed Research Program in Information

Processing"

Project: Formalized System Development

Principal Investigator: Herbert Schorr Grant
Number: NCC 2-520

Period of Performance: 11/01/87 - 09/30/92

\
\

\
\

\
\

\

o/fss
1The views and conclusions contained in this document must not be interpreted as rep-

resenting the official policies either expressed or implied of the Defense Advanced Research

Projects Agency or the U.S. Government.

(NASA-CR-194271) A PROPOSED
RESEARCH PROGRAM IN INFORMATION

PROCESSING Final Technical Report,

I Nov. 1987- 30 Sepo 1992
/,h._;_,_rcil-v nf _nHth_rn california)

N94-20134

Unclas



1 Objectives and Approach

The goal of the Formalized Software Development (FSD) project was to demonstrate

improvements productivity of software development and maintenance through the

use of a new software lifecycle paradigm. The paradigm calls for the mechanical, but

human-guided, derivation of software implementations from formal specifications of

the desired software behavior. It relies on altering a system's specification and red-

eriving its implementation as the standard technology for software maintenance. A

system definition for this paradigm is composed of a behavioral specification together

with a body of annotations that control the derivation of executable code from the

specification. Annotations generally achieve the selection of certain data representa-

tions and/or algorithms that are consistent with, but not mandated by, the behavioral

specification. In doing this, they may yield systems which exhibit only certain be-

haviors among multiple alternatives permitted by the behavioral specification.

The FSD project proposed to construct a tcstbcd in which to explore the re-

alization of this new paradigm. The testbcd was to provide operational support

environment for software design, implementation, and maintenance. The testbed was

proposed to provide highly automated support for individual programmers ("pro-

gramming in the small"), but not to address the additional needs of programming

teams ("programming in the large"). The testbcd proposed to focus on supporting

rapid construction and evolution of useful prototypes of software systems, as opposed

to focussing on the problems of achieving production quality performance of systems.

The proposal characterized the problem in terms of four capability "plateaus".

At the local annotation plateau, specifiers would use a pure extension of Common

Lisp as their specification language. Annotations would guide the translations of

those extensions into portable Common Lisp with executable code being produced by

commercial compilers with no awareness of the extensions. Common Lisp was chosen

as the language to extend in part because of in-house facilities and tools, and in part

because its commercial instantiations (particularly on Lisp Machines), provided the

best available base for a prototyping environment. Furthermore, the macro facilities

of Common Lisp provide a built-in mechanism for supporting language extensions

and annotations.

At the independent specification language plateau, the specifier would use a general-

purpose notation that was not an extensions of a general-purpose target programming

language. We did not propose building a true compiler for this langauge, but only a

front-end translator to a general-purpose programming language for which commer-

cial compilers were widely available. Translation would still be guided by annotations,

but some annotations would have the form of transformations, making it possible to

add new annotations without altering the translator. The power of the specification

language would still be sufficiently weak to permit treatment of the annotations as



an unstructured collection of pieces of advice.

At the implementation desi9 n plateau, the specification language would be suffi-

ciently abstracted from the implementation architecture that annotations treated as

advice in terms of the specification itself will not yield acceptible implementations,

probably even for prototyping purposes. The programmer would have to provide the

compiler with a derivation plan for arriving at an effective implementation. Such a

plan would resemeble a conventional program, whose data is units of specification to

be implemented and whose operations are transformations on that specification. The

implementor would be supported in finding a suitable derivation plan by automated

management of alternative partial plans. The ability to reuse most of a derivation

plan when an altered specification must be reimplemented was crucial to the viability

of this plateau.

At the evolvable specification plateau, support for performing maintenance on

the specification itself will exist. This additional support may entail the specifier

providing additional information about the specification, such a purposes, preferences,

and scenarios. The goal was to allow the specifier to describe desired changes in terms

that are on a higher level than localized syntactic changes to the specification.

The testbed software was itself to be built using this prototyping environment--

that is, following an intial bootstrapping operation to obtain an operational testbed

version, it was to be improved over the project lifetime using its own capabilities.

In addition, several small application programs, all in the area of administrative

information processing, were to be maintained using the testbed support as an ongoing

means of obtaining early feedback on the utility and quality of new support technology

and tools.

2 Technical Results

2.1 Relational Abstraction

The FSD project developed a body of useful "specification oriented" extensions to

general purpose, procedural, programming languages, centered around the use of

relation as an abstract type. We call this body of extensions relational abstraction. An

implementation of these capabilities as an extension to Common Lisp was provided
under the name AP5.1 Relational abstraction is best understood in terms of two

metaphors.

1A version of AP5 existed prior to the work covered by this report. Work done under this contract
substantially broadened and improved that implementation, both in coverage and in integration with

the host language.

2



The virtual database (VDB) programming metaphor offers programmers the ad-

vantages of a functional programming style couched in a semantic framework adapted

from relational and object-oriented databases, but oriented toward traditional "vir-

tual memory" software applications as opposed to the concerns of large size, persis-

tence, and sharing that dominate traditional database applications. What is borrowed

from database technology is the use of logical data models which support alternative

physical data models, and a (significantly extended) concern for data integrity. Ex-

tensive use of annotations (compiler pragmas) permits applications written using this

metaphor to be tuned to achieve implementation efficiency not otherwise achievable

with "operational" specification languages.

The active database (ADB) programming metaphor extends these capabilities by

using the concept of database state as the semantic foundation for specifying non-

functional parts of an application. It provides for the specification of processing

initiated by state changes. Such computations can be used for disparate purposes,

such as data integrity, cache maintenance, task automation, and end-user application

extension.

AP5 supported three classes of annotation to guide its translator:

• relation representation directives,

• data volume estimation, and

• directives to guide cacheing of derived relations.

The following publications are particularly relevant to results in the area of rela-

tional abstraction:[GC91, Wil90, Coh89, Coh87, Pro89].

2.2 Persistence

Even a programming-in-the-small environment requires considerable data persistence.

Lack of availability of a persistence mechanism for Common Lisp program data neces-

sitated our providing a means to make virtual database data persist across "sessions"

and, because the testbed supported small programming teams (relying on manual

coordination to solve the difficult problems), to make data sharable as well.

Our explorations in this area centered around use of our relational models to define

views of objects which could then be given an external representation, and the use

of active database capabilities to react to changes in views, enabling an incremental

implementation of persistence.

This produced a model, called worlds, which describes clusters of information

forming conceptual units in an object database. Worlds define semantically meaning-

ful aggregations to support data persistence and sharing.



The model representsa unification of object-basedand syntax-directed views,
preserving the good featuresof each. Information may be viewed simultaneously
as a structured grammatical whole or in terms of its fine-grained object structure.
This unification allowsmany of the implicit benefits from present-day file systems
to be incorporated as explicit featuresof the model. Furthermore, by recognizing
stylized relationshipsbetweenworlds,and definingoperatorsto expressthem, a higher
level of discoursenot expressiblein file-basedapproachesis attained for describing
aggregationsof data and their interrelationships.

Thefollowing publicationsareparticularly relevant to resultsin this area:[WGA87,
AW89, Wid90, HWW90, WWH90, IJW90, HWWY91].

2.3 Grammar-Based Tools

Popart is a language independent programming environment generator that takes a

language description in BNF variant and provides a parser, pattern matcher, lexical

analyzer, pretty-printer, semantic "action" routine mechanism, structure editor, and

transformation system. Its use predated the FSD effort, but new capabilities in

the areas of analysis, synthesis, and transformation were developed within the FSD

project and delivered as enhancements to Popart.

We developed LUKE (Lisp Universal Kode Elaborator), a general-purpose object-

oriented code walking "shell" for Common Lisp and languages embedded within it.

LUKE was heavily used within the testbed. Its central ideas were

• separating the recursive descent control of a code walking application from the

composition of the application result, and

• encapsulating a code walking application's control and composition decisions

in methods of generic functions, thus enabling new applications to be built as

specializations of others.

These ideas were later generalized and delivered as enhancements to Popart.

These developments are discussed in [Wi187, Go189, Wi193].

2.4 Reactive Integration

One particularly significant use of the active database paradigm within the FSD

testbed was in the implementation of reactive integration. Reactive integration is

a paradigm for control integration whereby one module is activated based on the

events occuring within another module. It attempts to remove the restriction that

these events be produced by a single mechanism, by providing common interfaces

between the specification of the activating behavior and the mechanism(s) used to

4



detect it, and betweenthat detectionand the activation that ensuesfrom the inclusion
of that behavior in the event stream. The former allowsalternative and/or multiple
eventdetection mechanismsto be used,while the latter characterizesthe activations
that follow a detection as standard procedureinvocations (both synchronousand
asynchronous)so that reactive integration can be provided as an optional service
layeredon top of a Module Interconnect:onFormalism (MIF).

Within the FSD testbed, reactiveintegration wasusedto maintain userinterface
consistencywith the changingvirtual database.Views produced through CLX (the
low-levelCommonLisp interfaceto the X window server)and through a client-server

connection to the Gnu Emacstext editor weremaintained in this way. This work is
describedin [BGN92].

2.5 Testbed and Capability Plateaus

Numerous programming environments have been built for Lisp software development

over the past two decades: Several commercial vendors of Common Lisp continue to

support high quality program development environments for their implementations

of Common Lisp. The FSD testbed differs from these environments in two primary

ways:

• The testbed provides an object based, rather than file based, organizational view

of software. The object based view comprises not only the definitions that make

up an application, but specification, documentation, development history and

other non-procedural information necessary to the development, maintenance,

and distribution of large software systems. The object granularity is typically

much finer than that of a file, each definition comprising a distinct object.

• The testbed provides an "open" architecture, occasionally even at the cost of

considerable efficiency, to enable programmers to tailor and extend the environ-

ment to meet their individual needs without the necessity of reimplementing

the existing environment.

The testbed itself supported only the local annotation plateau. In the course of

our research, we rejected the attempt to provide a single, "wide-spectrum", specifi-

cation language, a requisite part of the independent specification language plateau,

advocating instead the composition of systems from problem specific formal notations.

Nevertheless, results were achieved in each of the later plateau areas.

The work on transformations (section 2.3) provided an implementation path from

problem specific notations to general-purpose programming languages. Those capa-

bilities are being used in the context of DARPA's DSSA (domain specific software

architectures) program, which commenced shortly prior to the end of the FSD work.

5



Transformationswerealsothe basisof a Ph.D. thesis [Lia91,LC92], which provided a
meansto add instrumentation codeto CommonLisp programsbasedonspecifications
of measurementsto be made.

Experimentation with implementationdesigndemonstratedthat derivation plans
were far more brittle than the individual annotations of the first two plateaus. In
particular, the form in whichthe planswereexpressedmadethe plans overly sensitive
to the preciseform of the specification,sothat the planswould too often fail to apply
whenthe specificationwaschangedduring maintenance.The notion of an appropriate
implementationdesignplanwasreformulatedsothat, rather than targeting individual
transformations at specific units, groups of transformations were scheduledto be
recursively applied to the specification. A transformation group makes a certain
design decision (possibly mediated by annotations) and leavesthe specification in
a form (possibly in a "lower level" notation) suitable for addressingother design
decisions.A goodexampleof this is [Fea91].

Work on supporting the evolvablespecification plateau produced a set of capa-
bilities within the testbed that detectedboth intra- and inter-module inconsistencies
introduced asthe programmermodifieda specification.The supporting softwareman-
agedan agendaof problemsneedingresolution, leavingthe initiative for resolvingthe
problemswith the programmer [Nar92].

The testbed was used to developand maintain severaladministrative software
applicationsover the courseof the project. Theseincluded:

An electronicmail handling system,which wasusedto test the "openness"of
the architecture. Various usersaugmentedthe systemwith their own rules for
automatic messageclassificationand disposition, as well as tailoring the user
interface.

Softwareto managethe allocationof employees' time across projects within ISI.

This application stressed the notion of consistency embodied in the testbed's

realization of the active database metaphor ([Ba189]).

• A personal calendar manager, which was implemented to stress the capabilities

of reactive integration in user interface management.

Descriptions of the testbed and its use may be found in [GN92, NG91, Go191].

2.6 External Impact

Two other software development environments were influenced by our FSD testbed.

HP's Softbench product implemented a reactive integration mechanism to automate

tool execution. The Marvel environment, developed at Columbia University, provided



a rule-centeredprogrammingenvironment,but focussedmore on programming in the

large concerns.
An ongoing research project at HP labs (not yet productized) is the Bart "software

bus". Its SGL (software glue language) was influenced by relational abstraction.

The Arcadia group's process programming language, APPL/A, provided the VDB

and ADB metaphors as an extensions to Ada, but focussed more oa manipulation of

persistent than ephemeral data.

References

[AW89]

[Ba189]

[BGN92]

[Coh87]

[Coh89]

[Fea91]

[GC91]

[GN921

[Go189]

D. G. Allard and D. S. Wile. Aggregation, persistence, and identity in

Worlds. In Third International Workshop on Persistent Object Systems,

University of Newcastle, Australia, January 1989.

Robert Balzer. Tolerating inconsistency. In 11th Int'l Conf. on Software

Engg. IEEE, May 1989.

R. Balzer, N. Goldman, and K. Narayanswamy. The beginnings of a

prototech testbed based on event-stream integration. In Proc. of the

1992 DARPA Sofware Technology Conference, Los Angeles, April 1992.

Don Cohen. AP5 Manual. USC/Information Sciences Institute, 4676

Admiralty Way, Marina del Rey, CA, 90292, 1987.

D. Cohen. Compiling complex database transition triggers. In Proc. of

1989 ACM SIGMOD, pages 225-234. ACM, 1989.

M.S. Feather. Transformational implementation of historical reference.

In B. MSller, editor, Constructing Programs from Specifications, pages

225-242. North-Holland, 1991. Proceedings of the IFIP TC2/WG 2.1

Working Conference on Constructing Programs from Specifications, Pa-

cific Grove, CA, USA, 13-16 May 1991.

N. Goldman and D. Cohen. Extending common lisp with relational

abstraction. In DARPA Open OODB Workshop II, August 1991.

N.M. Goldman and K. Narayanaswamy. Software evolution through

iterative prototyping. In 14th Int'l Conf. on Software Engg. IEEE, May

1992.

Neil Goldman. Code walking and recursive descent: A generic approach.

In Proceedings of the Second CLOS Users and Implementors Workshop,

New Orleans, October 1989.



[Gol91]

[HWW90]

[HWWY91]

[iJW90]

[LC92]

[Lia91]

[Nar92]

[NG91]

[Pro89]

.[WGA871

[Wid90]

Neil Goldman. CLF Manual, September 1991.

R. Hull, S. Widjojo, and D. S. Wile. A SpecificationaI Approach to

Database Transformation. Morgan-Kaufmann, December 1990. editors:

A. Dearle and G. Shaw and S. Zdonik.

R. Hull, S. Widjojo, D. Wile, and M. Yoshikawa. On data restructur-

ing and merging with object identity. IEEE Data Engineering Bulletin,

Special Issue on Theoretical Foundations of Object-Oriented Database

Systems, 14(2), June 1991.

Edward A. Ipser, Jr., Dean Jacobs, and David S. Wile. A multi-

formalism specification environment. In Proceedings of the Fourth In-

ternational Conference on Software Development Environments, Irvine,

California, December 1990.

Yingsha Liao and Don Cohen. Pmms: A framework and system for

high level program monitoring and measuring. In Proceedings of IFIP

Conference, 1992, Madrid, Spain, September 1992.

Yingsha Liao. Requirement directed automatic instrumentation gener-

ation for program monitoring and measuring. In Proceedings of the 6th

Knowledge Based Software Engg. Conference, June 1991.

K. Narayanswamy. Smart support for software configuration manage-

ment. Technical report, USC/Information Sciences Institute, 1992.

K. Narayanswamy and N.M. Goldman. A flexible framework for coopera-

tive distributed software development. Journal of Systems and Software,

16(2), October 1991.

CLF Project. Ap5 training manual. Technical report, USC/Information

Sciences Institute, 1989.

D.S. Wile, N.M. Goldman, and D.G. Allard. Maintaining object per-

sistence in the common lisp framework. In Persistent Object Systems:

their design, implementation and use, pages 382-406. University of St.

Andrews, August 1987.

S. Widjojo. WorldBase: A Distributed Information Sharing System.

PhD thesis, Computer Science Department, University of Southern Cal-

ifornia, Los Angeles, CA, 1990.

8



m

[Wi1871

[Wi190]

[Wi193]

[WWH90]

David S. Wile. Local formalisms: Widening the spectrum of wide-

spectrum languages. In Meertens, editor, Program Specification and

Transformation. Elsevier Science Publishers B.V.: North-Holland, 1987.

David S. Wile. Adding relational abstraction to programming languages.

In Proceedings of an International Workshop on Formal Methods in Pro-

gramming, Napa Valley, CA, May 1990.

D. Wile. Popart: Producers of Parsers and Related Tools, Reference

Manual. USC/Information Sciences Institute, 4676 Admiralty Way, Ma-

rina del Rey, CA 90292, 1993.

S. Widjojo, D. S. Wile, and R. Hull. WorldBase: A New Approach to

Sharing Distributed Information. Technical report, USC/Information

Sciences Institute, February 1990.


